

Dipole Antenna Radiation Pattern Optimization Using Parasitic Element Size and Location

¹Rajkumar Maniam, ²Thennarasan Sabapathy, ³Mohamed Nasrun Osman ⁴Shanmuka Rooban Gunasekaran

⁵Muzammil Jusoh, Advanced Communication Engineering, Faculty of Electronics Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia

Correspondence: E-mail: shanmukarooban@gmail.com

Article Info

Article history:

Received November 10, 2025

Revised December 12, 2025

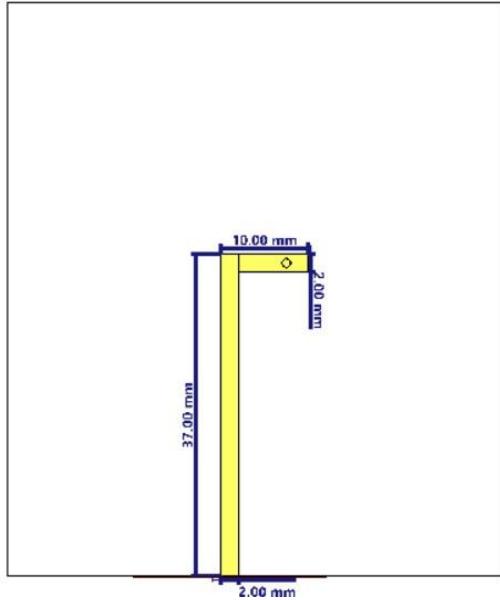
Accepted December 24, 2025

Keywords:

Dipole
Parasitic Element
Reconfigurable
Microstrip
Wired Dipole

ABSTRACT

This work focuses on refining the radiation pattern of a dipole antenna by introducing a parasitic element and carefully adjusting its size and position. A dual-band response emerges when the parasitic element is set to a width of 9 mm. The study explores dimensions of 0.98 Wh, 0.90 Wh, 0.70 Wh, and 0.75 Wh. For the first three cases, the element is placed 9.4 mm away from the dipole antenna. In the 0.75 Wh case, however, the spacing is increased to 11.8 mm, which produces a clear improvement in gain. These results show how subtle changes in geometry and placement can significantly influence antenna performance, offering a straightforward path to achieving dual-band operation with enhanced radiation characteristics.


1. INTRODUCTION

One of the most popular antenna configurations in wireless communication systems is the dipole antenna. They are frequently used for both practical applications and basic antenna research due to their simple design, ease of production, and predictable radiation behavior. An omnidirectional radiation pattern with steady impedance characteristics and moderate gain is produced by a conventional half-wave dipole. Dipole antennas are frequently used as reference elements for assessing and creating more sophisticated antenna designs because of these characteristics. In order to satisfy the

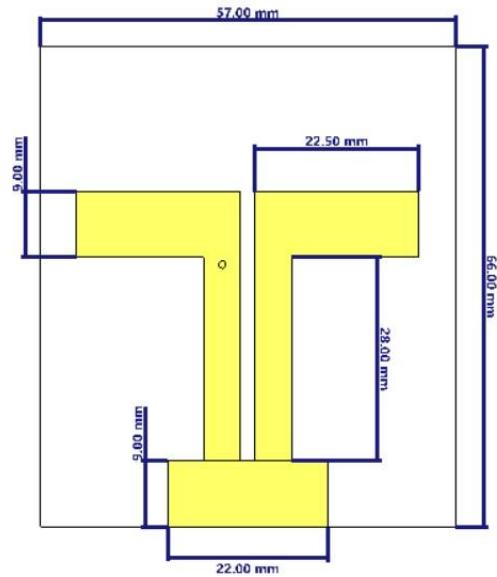
increasing demands of contemporary communication and sensing applications, research on dipole antennas has concentrated on enhancing their radiation performance, bandwidth, and adaptability over time. There are various types of dipole antennas like Wired Dipole antenna[1], [2], Microstrip Dipole [3], [4] antenna which are widely used in wireless communication. Researches are still ongoing for dipole antennas. The use of reconfigurable technique [5], [6], Metamaterial technique [7], [8], and parasitic element technique [9], [10] for dipole antenna is growing rapidly. In particular use of parasitic is famously adopted in dipole

antenna to develop Yagi-Uda antenna [11], [12]. Parasitic elements are used as director and reflectors

In this work, Printed dipole antenna is studied with the use of parasitic element. Location and size of the parasitic are carefully analyzed to observe the radiation pattern change on the

Figure 1. Front view

Figure 1 and 2 shows front and back view of the dimension. The size and dimension of the dipole antenna holds the main key in this design.


2.2 Parasitic element with dipole antenna

Mechanism of parasitic element in Yagi-Uda and in Dipole antenna are the same. Parasitic elements are used as director and reflectors. By changing length of the parasitic element, the radiation pattern goes towards opposite direction. When the parasitic element moves further from

dipole antenna. This careful study will help to design future pattern reconfigurable antenna.

2. Dipole Antenna design

2.1 Conventional printed dipole antenna

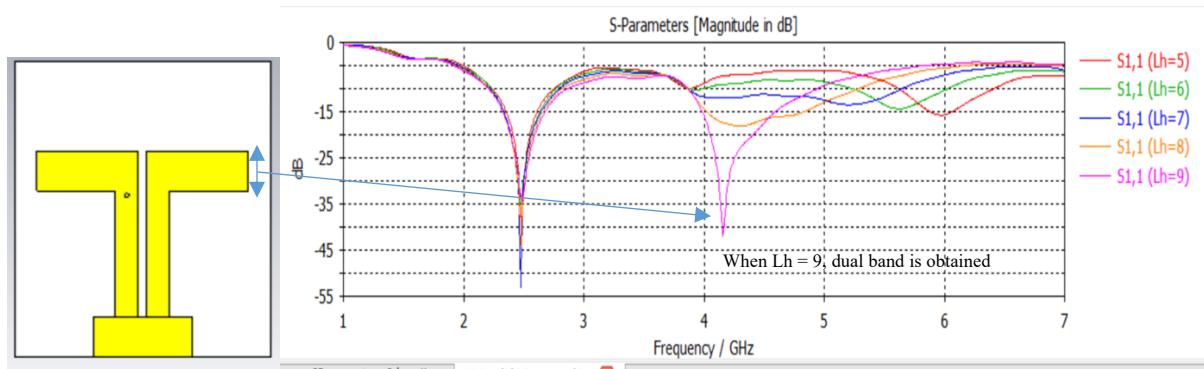
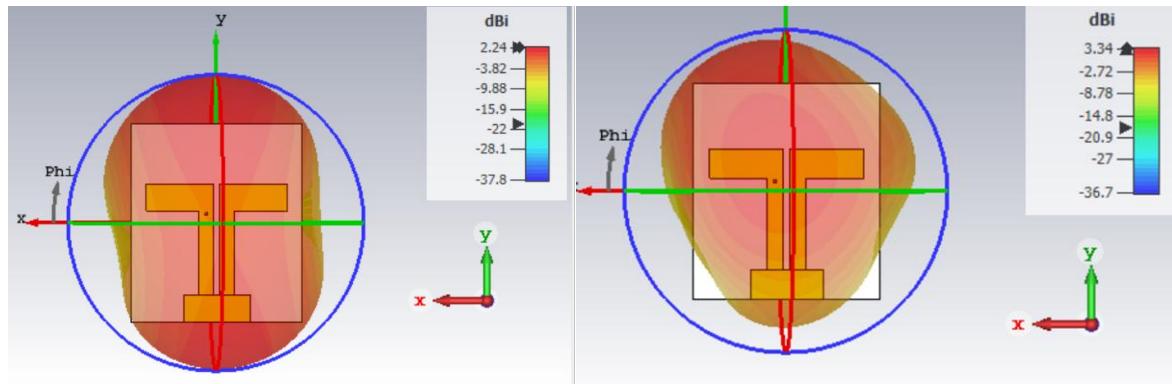


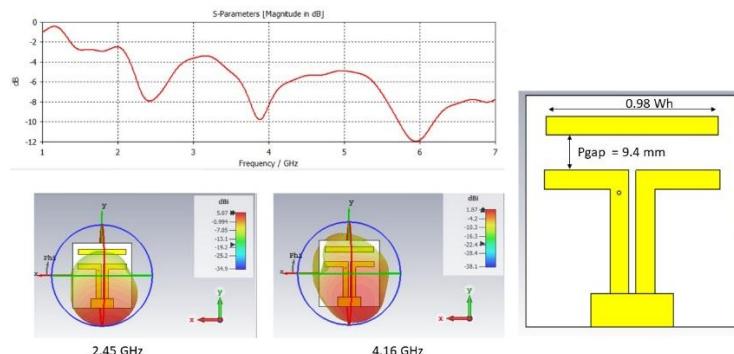
Figure 2. Back View


Dipole antenna, the gain increases. The Dimension of the parasitic element are 0.98Wh, 0.9Wh, 0.7Wh and 0.75Wh. The distance between parasitic element and the dipole antenna is 9.4 mm during dimension of the parasitic element are 0.98Wh, 0.9Wh, 0.7Wh. Only for dimension 0.75Wh the distance changes from 9.4 mm to 11.8 mm for increasing the gain value. The value of Wh is 47mm.

3. RESULTS AND DISCUSSION

3.1 Conventional printed dipole antenna

Figure 3. Parameter Sweep for Dipole Antenna achieve dual band


Figure 4. 2.45GHz

Parameter sweep done for Dipole antenna for achieving dual band. From the figure 3, it clearly visible when L_h is 9mm the dual band is achieved. The frequencies are 2.45GHz and 4.16GHz

Figure 5. 4.16GHz

Figure 4 and 5 shows radiation pattern at 2.45GHz and 4.16GHz frequencies. Both are in omnidirectional state.

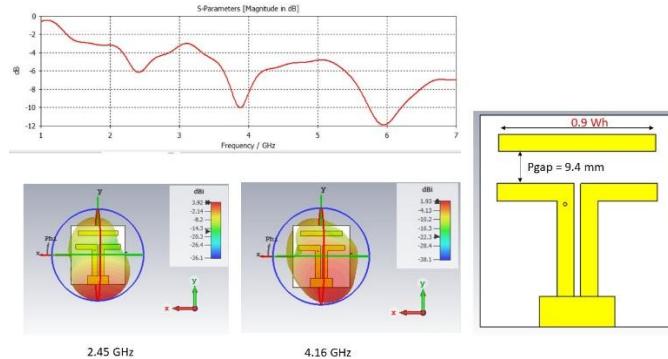

3.2 Parasitic element with dipole antenna

Figure 6. Result during length 0.98Wh & Pgap 9.4mm

Figure 6 shows S11 results when the parasitic element length 0.98Wh and Pgap 9.4mm. The radiation pattern is in

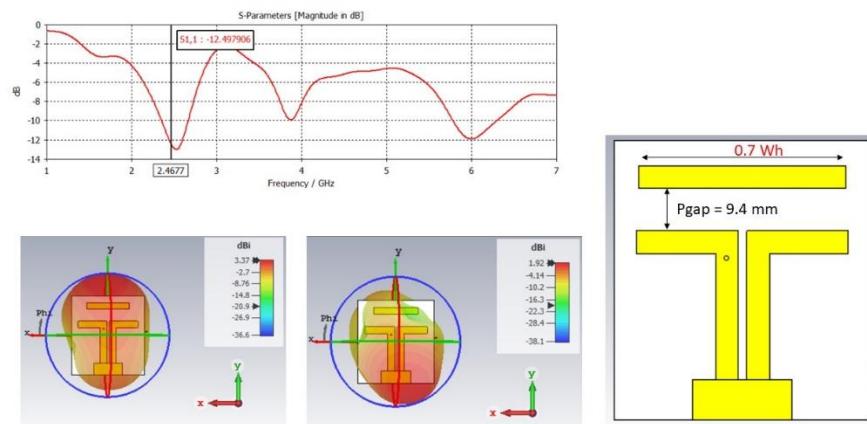

omnidirectional state for both the frequencies.

Figure 7. Result during length 0.9Wh & Pgap 9.4mm

Figure 7 shows S11 results when the parasitic element length 0.9Wh and Pgap 9.4mm. The radiation pattern became

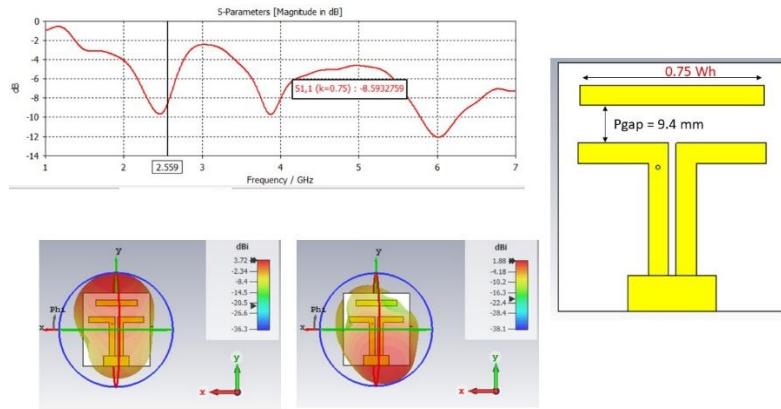

directional state from omnidirectional state for both the frequencies.

Figure 8. Result during length 0.7Wh & Pgap 9.4mm

Figure 8 shows S11 results when the parasitic element length 0.7Wh and Pgap 9.4mm. The radiation pattern became

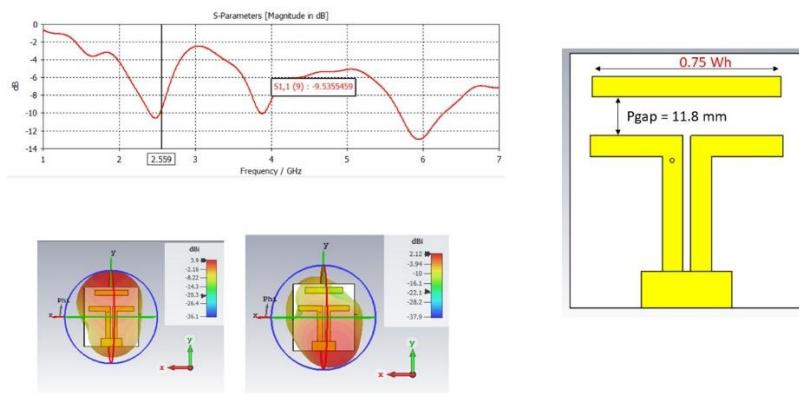

directional state from omnidirectional state for both the frequencies.

Figure 9. Result during length 0.75Wh & Pgaps 9.4mm

Figure 9 shows S11 results when the parasitic element length 0.75Wh and Pgaps 9.4mm. The radiation pattern became

directional state from omnidirectional state for both the frequencies.

Figure 10. Result during length 0.75Wh & Pgaps 11.8mm

Figure 10 shows S11 results when the parasitic element length 0.75Wh and Pgaps 11.8mm. The radiation pattern became directional state from omnidirectional state for both the frequencies. The increase in gap between Dipole and parasitic element from 9.4mm to 11.8mm due to achieve high gain.

4. CONCLUSION

In this work, radiation pattern optimized using parasitic element for dipole antenna by varying its size and location. The dual band

achieved when width of the parasitic element is 9mm. The parasitic element was studied at dimensions of 0.98 Wh, 0.90 Wh, 0.70 Wh, and 0.75 Wh. For the first three sizes, the spacing from the dipole antenna remained fixed at 9.4 mm. With the 0.75 Wh dimension, however, the distance was adjusted from 9.4 mm to 11.8 mm, a change that led to a noticeable increase in gain.

5. ACKNOWLEDGMENT

This work was funded by Ministry of Higher Education through the Fundamental Research

Grant Scheme (FRGS) under grant number
FRGS/1/2021/TK0/UNIMAP/02/36.

6. REFERENCES

- [1] H. Yamada and J. Wang, "Estimation of Electric Field Radiated from Wire Harness based on Approximation of Common-Mode Current Distribution using Asymmetric Dipole Antenna," in *2021 IEEE CPMT Symposium Japan, ICSJ 2021*, Institute of Electrical and Electronics Engineers Inc., 2021, pp. 17–20. doi: 10.1109/IC SJ52620.2021.9648896.
- [2] D. Poljak and J. Boban, "Wireless Power Transfer by using Thin Wire Antennas Case of Dipole Antennas in Free Space."
- [3] J. Chen, Z. Liang, and Y. Li, "High-gain microstrip magnetic dipole antenna with metal grating," in *IEEE Conference on Antenna Measurements and Applications, CAMA*, Institute of Electrical and Electronics Engineers, 2022. doi: 10.1109/CAMA56352.2022.10002667.
- [4] P. S. Rathore, S. K. Jain, A. Jain, and I. Hamzaansari, "Microstrip Dipole Antenna Design for Direction of Arrival Estimation of Signal," in *4th Wireless, Antenna and Microwave Symposium, WAMS 2025*, Institute of Electrical and Electronics Engineers Inc., 2025. doi: 10.1109/WAMS64402.2025.11157973.
- [5] X. Chen, X. Fang, Z. Wu, and L. Zhu, "A Pattern-Reconfigurable, Compact, Wideband Filtering Directive Dipole Antenna Enabled With Mixed Couplings," *IEEE Antennas Wirel. Propag. Lett.*, vol. 24, no. 1, pp. 237–241, 2025, doi: 10.1109/LAWP.2024.3493122.
- [6] T. Wang, H. Zhai, J. Li, and Q. Sun, "Ferrite-Loaded Magnetically Reconfigurable SIW Magnetic Dipole Antenna With Tunable Frequencies," *IEEE Antennas Wirel. Propag. Lett.*, vol. 23, no. 10, pp. 2969–2973, 2024, doi: 10.1109/LAWP.2024.3416521.
- [7] R. Raj, A. Kumar, and R. K. Chaudhary, "Dual Mode ENG-Metamaterial Inspired Electric Dipole Antenna for Wearable Applications," in *2024 IEEE 11th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering, UPCON 2024*, Institute of Electrical and Electronics Engineers Inc., 2024. doi: 10.1109/UPCON62832.2024.10983480.
- [8] X. Zhu, D. Liao, and Z. Wang, "Decoupling Magnetic Dipoles by Mu-Near-Zero Metamaterials," in *ISAPE 2024 - 14th International Symposium on Antennas, Propagation and EM Theory*, Institute of Electrical and Electronics Engineers Inc., 2024. doi: 10.1109/ISAPE62431.2024.10840455.
- [9] C. F. Ding, Y. Zeng, and M. Yu, "Compact Dual-Polarized Filtering Dipole Antenna by Using Asymmetric Parasitic Elements," *IEEE Trans. Antennas Propag.*, vol. 71, no. 10, pp. 7903–7910, Oct. 2023, doi: 10.1109/TAP.2023.3303960.
- [10] M. Behboudi, J. Nourinia, and C. Ghobadi, "Miniaturized Printed X-Band Magneto-Electric Dipole Antenna by Loading Parasitic Elements," in *11th International Symposium on Telecommunication: Communication in the Age of Artificial Intelligence, IST 2024*, Institute of Electrical and Electronics Engineers Inc., 2024, pp. 561–566. doi: 10.1109/IST64061.2024.10843516.
- [11] Y. Liu, X. Ma, Y. Luo, and K. Ma, "Design of Terahertz Yagi-Uda Antenna Based on Compressed 3rd-Order Mode Dipole," in *16th UK-Europe-China Workshop on Millimetre Waves and Terahertz Technologies, UCMMT 2023 - Proceedings*, Institute of Electrical and Electronics Engineers Inc., 2023. doi: 10.1109/UCM MT58116.2023.10310457.

[12] S. Shakthivel, B. R. Chandana, B. C. Kavya, O. B. Vikram, J. Suganthi, and G. Nagendra Rao, "Cross-Dipole Right-Hand Circularly Polarized UHF/VHF Yagi-Uda Antenna for Satellite Applications," in *2024 International Conference on Advances in Modern Age Technologies for Health and Engineering Science, AMATHE 2024*, Institute of Electrical and Electronics Engineers Inc., 2024. doi: 10.1109/AMATHE61652.2024.10582081.