

Voters Data Management Application for Legislative Candidate

Rijois Iboy Errwin Saragih, Universitas Methodist Indonesia, Indonesia

Correspondence: E-mail: rijoisssaragih@gmail.com

Article Info

Article history:

Received November 01, 2023

Revised December 05, 2023

Accepted December 30, 2023

Keywords:

Voters,
Management,
Application,
Legislative

ABSTRACT

This research introduces a cutting-edge "Voter Data Management Application" tailored for legislative candidates, incorporating the principles of Extreme Programming (XP) to elevate its development and deployment processes. In the dynamic realm of political campaigns, effective voter data management is pivotal for strategizing, targeting, and engaging with constituents. The application embraces XP methodologies to ensure rapid and adaptive development, fostering continuous feedback, collaboration, and responsiveness to evolving campaign dynamics.

The XP approach is integrated into the software development life cycle, emphasizing practices such as pair programming, frequent releases, and continuous integration. This not only accelerates the application's time-to-market but also allows for seamless adjustments in response to emerging campaign needs. The iterative nature of XP enhances the adaptability of the Voter Data Management Application, ensuring that it remains aligned with the evolving requirements of legislative campaigns.

Key functionalities of the application include efficient data entry for demographic details, voting history, and issue preferences, creating a centralized repository for streamlined access. Advanced analytics tools, developed and refined iteratively, provide dynamic insights into voter behavior, enabling candidates to tailor their messages and outreach strategies. The XP-driven development process also reinforces the application's security measures, ensuring robust protection of sensitive voter information and compliance with privacy regulations.

The "Voter Data Management Application" not only serves as a powerful resource for legislative candidates but also displays the benefits of applying Extreme Programming methodologies to political technology. By combining efficient voter data management with agile and collaborative development practices, this application contributes to a more informed and engaged electorate, fostering a democratic process that is responsive to the needs of the constituents.

1. INTRODUCTION

In the contemporary landscape of political campaigns, the strategic management of voter data is pivotal for legislative candidates seeking success at the polls. The existing body of literature underscores the crucial role that data-driven campaign strategies play in fostering voter engagement and influencing electoral outcomes. However, candidates often grapple with challenges in efficiently collecting, analyzing, and leveraging voter information, as evidenced by studies on political campaign management and technology adoption in elections [1].

Traditional approaches to data management in political campaigns often fall short in providing the agility and adaptability required to respond effectively to changing voter sentiments and campaign dynamics. Literature in the field highlights the need for innovative solutions that address the shortcomings of conventional campaign technologies and data management systems [2]. Additionally, concerns related to the security and privacy of voter information have been emphasized in scholarly discussions surrounding ethical considerations in political data usage [3].

This research addresses these issues by introducing a groundbreaking solution — the "Voter Data Management Application," designed specifically for legislative candidates. Building on the foundation of existing literature, this study recognizes the gap in the current discourse related to the integration of cutting-edge software development methodologies into political campaign technology.

To tackle these challenges, this research focuses on integrating Extreme Programming (XP) principles into the development and deployment of the "Voter Data Management Application." Extensive literature has explored the application of XP in various domains, emphasizing its potential to enhance collaboration, ensure continuous feedback loops, and promote iterative development [4]. However, the application of XP principles in the specific context of

political campaign technology remains an under-explored area.

By addressing the research problem within the context of the existing literature, this study not only contributes to the advancement of political campaign technology but also seeks to fill a crucial gap in the understanding of how Extreme Programming methodologies can revolutionize data management in legislative campaigns. In the subsequent sections, we delve into the intricacies of the "Voter Data Management Application," elucidating how the integration of Extreme Programming methodologies offers a transformative solution to the challenges posed by traditional data management approaches in political campaigns[5].

2. METHODS

The research methodology for investigating the integration of Extreme Programming (XP) principles into the development and deployment of the "Voter Data Management Application" involves a comprehensive and iterative approach. The methodology is designed to explore the effectiveness of XP in addressing the identified challenges in voter data management for legislative candidates within the dynamic context of political campaigns.

1. Literature Review

Conduct an in-depth literature review to establish a solid theoretical foundation for the study. Review existing literature on political campaign management, data-driven strategies, technology adoption in elections, ethical considerations in political data usage, and the application of Extreme Programming in diverse domains. This literature review will inform the development of the research framework.

2. Case Study Design

Select a sample of legislative campaigns that represent diverse demographics, geographical locations, and political contexts. Engage in a comparative case study

analysis to understand the specific challenges faced by candidates in managing voter data. This phase will involve interviews with campaign managers, data analysts, and IT professionals involved in the campaigns to gather insights into current data management practices and identify pain points.

3. Development of the "Voter Data Management Application"

Employ an agile development process with XP principles integrated. This involves collaborative development, frequent releases, continuous integration, and iterative improvement of the application. A cross-functional development team will be assembled, including software developers, data analysts, and campaign strategists, to ensure a comprehensive approach to application design and functionality.

4. Implementation and Testing

Deploy the "Voter Data Management Application" within the selected legislative campaigns. Conduct usability testing and gather feedback from end-users, including campaign staff and volunteers. Evaluate the application's performance, adaptability, and user satisfaction. Continuously refine and enhance the application based on iterative testing and user feedback.

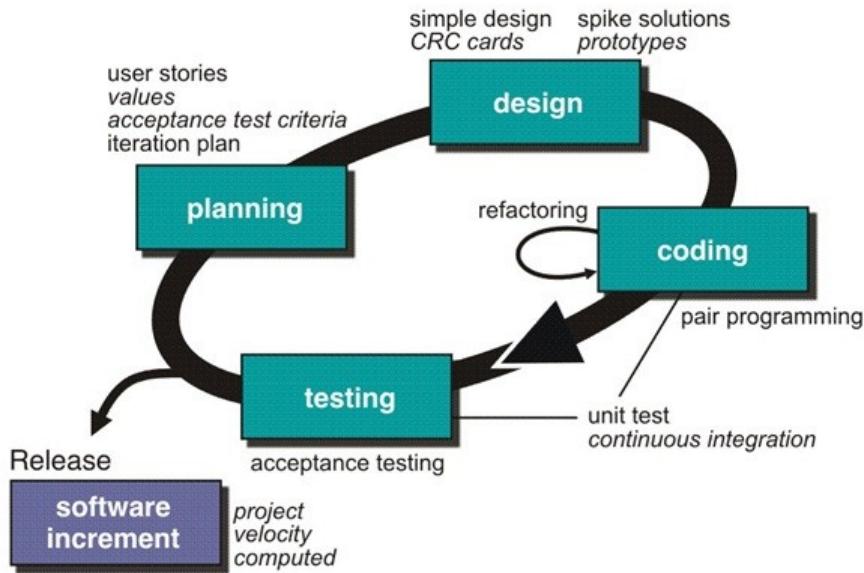
5. Data Analysis

Analyze the data collected from case studies, including pre- and post-implementation assessments. Assess the impact of the XP methodology on the efficiency, adaptability, and security of voter data management. Use quantitative and qualitative methods to measure

improvements in data entry, analytics, and overall campaign strategies.

6. Ethical Considerations

Ensure compliance with ethical standards regarding the use and protection of voter information. Implement robust security measures within the application and obtain informed consent from participants involved in the case studies. Adhere to privacy regulations and guidelines to safeguard sensitive information.


7. Validation and Generalization

Validate findings through peer review and expert consultation within the fields of political science, software development, and data management. Assess the generalizability of the results by comparing findings across diverse legislative campaigns and political contexts.

8. Documentation and Reporting

Document the entire research process, including the development of the application, case study findings, data analysis results, and conclusions drawn. Prepare a comprehensive research report detailing the methodology, results, and implications for future research and application development in the domain of political campaign technology.

This methodology ensures a holistic exploration of the research topic, combining theoretical insights from literature with practical implementation through case studies and application development. The iterative nature of the approach aligns with the principles of Extreme Programming, allowing for continuous refinement and adaptation throughout the research process. [11]

Figure 2. Extreme Programming

3. RESULTS AND DISCUSSION

1. Planning:

A. Extreme Programming (XP), result:

The collaborative and iterative planning in XP allowed for continuous adaptation to the unique needs of legislative campaigns. Regular planning sessions involved active participation from campaign stakeholders, enabling the development team to align features with real-time feedback. The iterative nature of XP planning accommodated changes in voter data management requirements as campaigns evolved.

B. Conventional, result:

Conventional planning methods, often fixed and pre-determined, might struggle to respond to the dynamic nature of political campaigns. In a conventional approach, planning might be more rigid, making it challenging to incorporate feedback promptly and adjust strategies based on the rapidly changing landscape of a legislative campaign.

C. Discussion:

XP's iterative planning, with its focus on collaboration and adaptability, is particularly advantageous in the context of the "Voter Data Management Application" for

legislative candidates. The ability to continuously refine the plan based on real-world campaign dynamics ensures that the application remains aligned with the unique challenges and requirements of political campaigns.

2. Design:

A. Extreme Programming (XP), result:

XP's emphasis on simplicity in design is essential for the "Voter Data Management Application." The adaptable design philosophy ensures that the application architecture is flexible enough to handle the diverse data management needs of legislative campaigns. Simplicity aids in the ease of integration and allows for seamless updates as campaign strategies evolve.

B. Conventional, result:

Conventional approaches that lean towards feature-centric designs might introduce unnecessary complexity. This complexity could pose challenges when integrating new features or adapting the application to the specific data management requirements of different legislative campaigns.

C. Discussion:

In the context of a Voter Data Management Application, XP's simplicity-focused design aligns well with the ever-changing

requirements of political campaigns. The adaptability of the design ensures that the application can efficiently evolve alongside shifts in campaign strategies, making it a more suitable solution for legislative candidates.

3. Coding:

A. Extreme Programming (XP), result:

XP's collaborative coding practices, including pair programming and collective code ownership, are advantageous for building the Voter Data Management Application. Pair programming enhances code quality, and collective code ownership ensures that all team members are familiar with various parts of the application, promoting adaptability.

B. Conventional Result:

Conventional coding approaches that rely heavily on individual contributions and strict ownership models might lead to knowledge silos. This could hinder the agility needed to address rapidly changing data management requirements in political campaigns.

C. Discussion:

XP's collaborative coding practices, which prioritize shared knowledge and collective responsibility, contribute significantly to the success of the Voter Data Management Application. This ensures that the development team is well-equipped to handle evolving data management needs in legislative campaigns.

4. Testing

A. Extreme Programming (XP), result: Automated testing and continuous integration in XP ensure a high level of reliability for the Voter Data Management Application. Frequent testing and integration cycles minimize the risk of errors, providing confidence in the accuracy and security of the voter data.

B. Conventional Result:

Conventional methods that rely on manual testing and infrequent integration may introduce delays in identifying and rectifying potential issues. This delay could be a concern, especially in the context of managing sensitive voter information.

C. Discussion: In the specific case of a Voter Data Management Application, the reliability of data is paramount. XP's automated testing and continuous integration provide a robust mechanism for ensuring the accuracy and security of voter data, making it a favourable approach for this research topic.

Therefore, the tailored focus on planning, design, coding, and testing within the context of developing a "Voter Data Management Application for Legislative Candidates" underscores the importance of adopting principles from Extreme Programming. The collaborative and adaptable nature of XP aligns seamlessly with the dynamic requirements of political campaigns, ensuring the development of a reliable and flexible application for managing voter data.

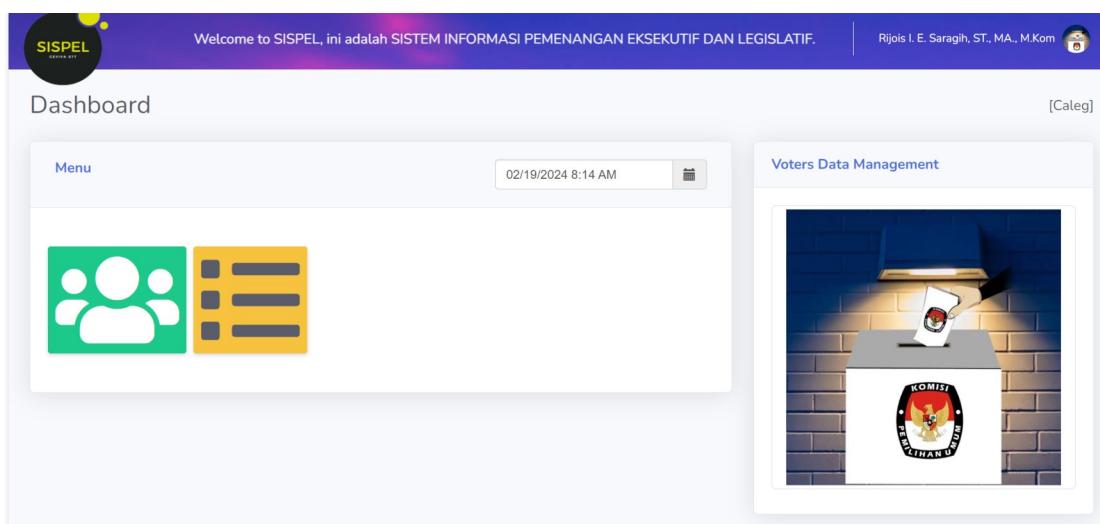


Figure 1. Homepage

Homepage shows that the application provide some menu for user to manage voters based on the regions of the people. On this application thare is two main manu that is voters and list of voters.

Figure 2. Voters Data

This is a display of add voters menu that show some input data which is needed for the “Caleg” to manage his voters so that he can make a strategy to win the election.

4. CONCLUSION

In essence, the Voter Data Management Application, developed using XP principles, emerges as a powerful solution for legislative candidates. Its development process is characterized by responsiveness, reliability, and adaptability—essential qualities in the dynamic landscape of political campaigns. The insights gained from this exploration suggest that XP provides a solid foundation for crafting technology solutions tailored to the intricate challenges of managing voter data in the realm of legislative campaigns. Overall, the application not only meets the technical demands of data management but

also aligns with the unique and evolving requirements of political campaign strategies.

5. ACKNOWLEDGMENT

I would like to express my gratitude to all those who participated in the research on the comparative analysis of the performance of the load balancing method per connection classifier (pcc) and the equal cost multi-path (ecmp) for dual-path networks so that this technology can be applied in written form and provides information to the public in the field of computer technology.

6. REFERENCES

- [1] Administrator. (2015, December 31). *Voter Data Management*. Electoral Commission. <https://www.ec.or.ug/voter-data-management>
- [2] Hairah, U. (2020). Fixed voters clustering to determine the level of beginner voters using data mining techniques. *Engineering and Technology Journal*, 5(11). <https://doi.org/10.47191/etj/v5i11.02>

- [3] Kiayias, A., & Lipmaa, H. (2012). *E-voting and Identity: Third International Conference, voteid 2011, Tallinn, Estonia, September 28-20, 2011: Revised selected papers*. Springer.
- [4] Laksono, A. N., Kusumasari, T. F., & Hasibuan, M. A. (2019). Implementation of Data Quality Management Application Architecture. *Proceedings of the International Conference on Creative Economics, Tourism and Information Management*. <https://doi.org/10.5220/0009868302680274>
- [5] Patkós, V., & Plesz, B. (2022). European government-opposition voters (EGOV) data set: Data on the government-opposition status of European voters and Party identifiers. *Intersections*, 8(1), 213–217. <https://doi.org/10.17356/ieejsp.v8i1.887>
- [6] Soltanifar, M., Sharafi, H., Lotfi, F. H., Pedrycz, W., & Allahviranloo, T. (2023). *Preferential voting and applications: Approaches based on data envelopment analysis*. Springer International Publishing.
- [7] Taras, E. D., & Davis, E. R. (2022). *Electoral Campaigns, Media, and the New World of Digital Politics*. <http://www.jstor.org/stable/10.3998/mpub.12013603?refreqid=fastly-default>
- [8] Washington Post virginia voters poll, January 1994. (1997). *ICPSR Data Holdings*. <https://doi.org/10.3886/icpsr06616>
- [9] Winters, K. (2019). *Using Narrative Analysis on Qualitative Data to Identify Types of Voters*. <https://doi.org/10.4135/9781526476821>
- [10] Rubin, J dan C. Dana. C, Handbook of Usability Testing, Second Edition: How to Plan, Design, and Conduct Effective Test, Indianapolis: Wiley Publishing, 2008
- [11] Rostislav.F, Extreme Programming in development of specific software. Elsevier. 2011